
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 1 Daniel Llamocca

Multi-threading: Matrix Multiplication

OBJECTIVES
▪ Learn the basics of multi-threading implementation using pthreads in C.

▪ Execute multi-threaded applications.
▪ Measure execution time (with 1 us resolution) for different number of threads.

REPOSITORY EXAMPLES

▪ Refer to the Tutorial: Embedded Intel for the source file used in this Tutorial.

TERASIC DE2I-150 BOARD

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

BOARD SETUP

▪ Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.

✓ Refer to the DE2i-150 Quick Start Guide (page 2) for a useful illustration.

ACTIVITIES

FIRST ACTIVITY: MATRIX MULTIPLICATION (SEQUENTIAL IMPLEMENTATION)
▪ This is a popular application. It involves many calculations, especially when it comes to matrices of higher order:

𝐶𝑚×𝑛 = 𝐴𝑚×𝑝 × 𝐵𝑝×𝑛

▪ A straightforward implementation involves nested loops where the dot product is computed for each element of the output

matrix. There are mxn dot products in this operation, where each dot product involves two p-element vectors.

▪ Application files: matrix_mult.c, mat_fun.c, mat_fun.h

✓ We use a parameter N = m = n = p = 20. This parameter can be modified before compilation.

✓ The matrices A and B are initialized with random data.

▪ Compile this application:

make matrix_mult 

▪ Execute this application:

./matrix_mult 

▪ Processing time: This is measured using the gettimeofday() function in the sys/time.h library. Note that only the actual

computation time is included. This excludes memory allocation and matrix initialization.

✓ For N=20, the processing time results in 90 us. Feel free to verify this result.

SECOND ACTIVITY: MULTI-THREADED MATRIX MULTIPLICATION

▪ Using pthreads leverages the parallel computing capabilities of the microprocessor. Here, parallelism is achieved by

distributing the operations (ideally evenly) among threads than run in parallel.
▪ This popular application can be easily parallelized.

𝐶𝑚×𝑛 = 𝐴𝑚×𝑝 × 𝐵𝑝×𝑛

▪ In this application, we distribute the operations in terms of computed rows.

OPERATION

▪ To compute an output matrix with n rows, a group of threads is generated, where each thread computes a number of rows.

All these threads simultaneously compute the output rows.

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

b00 b01 b02 b03 b04

b10 b11 b12 b13 b14

b20 b21 b22 b23 b24

b30 b31 b32 b33 b34

b40 b41 b42 b43 b44

c00 c01 c02 c03 c04

c10 c11 c12 c13 c14

c20 c21 c22 c23 c24

c30 c31 c32 c33 c34

c40 c41 c42 c43 c44

Figure 1. Matrix multiplication for matrices of size 5x5

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 2 Daniel Llamocca

▪ If the number of threads is given by nthreads, then the index i represents each thread form 0 to nthreads-1. Thus, each thread

i computes rows from: ⌊
𝑖×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ to ⌊

(𝑖+1)×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ − 1.

✓ nthreads = n: Each thread i computes row i.

✓ nthreads = 1: Here, thread i = 0 computes rows from 0 to n-1. There is no parallelization here.

✓ nthreads > n: Here, there are nthreads-n threads where ⌊
𝑖×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ = ⌊

(𝑖+1)×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋. These threads are idle. The remaining n

threads compute one thread each. This is suboptimal.

✓ In general, we prefer nthreads [1, n]

▪ Examples for n = 10.

✓ Fig. 2 depicts the case for 5 threads, each in charge of computing two rows.

✓ Table I shows two cases (nthreads = 4,6) where the computations cannot be distributed evenly among the threads.

TABLE I. ROWS COMPUTED PER EACH THREAD FOR DIFFERENT NUMBER OF THREADS. OUTPUT MATRIX IS OF SIZE 10X10.

nthreads = 5 nthreads = 6 nthreads = 4

i rows computed i rows computed i rows computed

0 0 to 1 0 0 to 0 0 0 to 1

1 2 to 3 1 1 to 2 1 2 to 4

2 4 to 5 2 3 to 4 2 5 to 6

3 6 to 7 3 5 to 5 3 7 to 9

4 8 to 9 4 6 to 7

 5 8 to 9

▪ Application files: matrix_mult_pthreads.c, mat_fun.c, mat_fun.h

✓ We use a parameter N = m = n = p = 20. This parameter can be modified before compilation.

✓ The matrices A and B are initialized with random data.

✓ The number of threads (nthreads) is an argument of the program.

✓ There is a parameter MTIME set to 0. It will print out execution messages for each thread. When measuring time, you

need to set MTIME to 1 to avoid including printf instructions in the computation times.

✓ Code structure:
 Thread generation and initialization of arguments.

 Initialization of input matrices A and B.

 If nthreads > 1: Create nthreads threads, where each thread i computes threads ⌊
𝑖×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ to ⌊

(𝑖+1)×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ − 1.

 Wait until threads complete, merge all the results.
 Display output results.

▪ Compile this application: make matrix_mult_pthreads 

▪ Execute this application: ./matrix_mult_pthreads <# of threads> 
▪ Example: ./matrix_mult_pthreads 10

✓ Fig. 3 displays the execution messages (output matrix of size 20x20). Note that threads are not necessarily created
consecutively. Some threads even finish before others are created (this varies every time the code is run), which means
that some are not executed simultaneously. This happens because the processing load of each thread is small.

✓ Fig. 4 displays the execution time. For best accuracy, the messages generated by the threads (“computing slice i”,

“finishing slice i”) are not included in the measurements.

c00 c01 c02 c03 c04 c05 c06 c07 c08 c09

c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

c20 c21 c22 c23 c24 c25 c26 c27 c28 c29

c30 c31 c32 c33 c34 c35 c36 c37 c38 c39

c40 c41 c42 c43 c44 c45 c46 c47 c48 c49

c50 c51 c52 c53 c54 c55 c56 c57 c58 c59

c60 c61 c62 c63 c64 c65 c66 c67 c68 c69

c70 c71 c72 c73 c74 c75 c76 c77 c78 c79

c80 c81 c82 c83 c84 c85 c86 c87 c88 c89

c90 c91 c92 c93 c94 c95 c96 c97 c98 c99

Figure 2. Task allocation for n=10, nthreads = 5.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 3 Daniel Llamocca

Figure 3. Program execution with nthreads = 10 and matrix size 20x20. Each thread generates message (“computing slice i”,

“Finished slice i”). We do not show the execution time here, as it would include the printing of the messages by each

thread. Note how threads can be created and executed in a non-consecutive fashion

Figure 4. Program execution with nthreads = 10 and matrix size 20x20. The execution time here does not include

the printing of the messages by the individual threads.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 4 Daniel Llamocca

▪ Processing time: This is measured using the gettimeofday() function in the sys/time.h library. Note that only the actual

computation time is included. This excludes memory allocation, matrix initialization, and threads arguments generation.

✓ Table II shows different cases. For N=20, the use of more threads increases the computation time. This also occurs for

N=50, though the increase is not as pronounced (in some instances, the computation time is decreased). However, for

N=100, 200, the multi-threading approach does reduce the computation time. Both thread initialization and argument

generation incur in overhead time, and large values of N are needed to offset these overhead times.

✓ Table III shows more cases for large matrices. Note that increasing the number of threads does not lead to performance
improvements, and actually increases the processing time.

✓ The case nthreads=1 does not use pthreads (it is a normal matrix multiplication).

✓ Due to variation (sometimes large) in processing time per run, we take an average over 10 consecutive runs. Feel free
to verify these processing times on your own.

TABLE II. COMPUTATION TIMES (US) FOR DIFFERENT # OF THREADS AND DIFFERENT MATRIX SIZES. TERASIC DE2I-150 BOARD.

N
of threads

1 2 3 4 5 6 7 8 9 10

20 90 508 586 647 781 946 982 1252 1304 1591

50 1361 1351 1277 1166 1533 1440 1641 1631 1717 1711

100 12331 6454 7152 5882 6841 4996 6691 6507 5152 4830

200 144835 92508 75932 74977 75448 77430 76338 80051 79652 72048

500 4,484270 2,264484 1,670049 1,639815 1,614753 1,565853 1,534638 1,525751 1,505418 1,487816

TABLE III. COMPUTATION TIMES (US) FOR DIFFERENT # OF THREADS AND LARGE MATRIX SIZES. TERASIC DE2I-150 BOARD.

N
of threads

10 20 50 100

100 4830 5217 10094 14450

200 72048 73341 75921 77345

500 1,487816 1,475492 1,465813 1,482250

THIRD ACTIVITY: MULTI-THREADED FIBONACCI NUMBER COMPUTATION

▪ Compute 𝐹𝑛 for 𝑛 > 1:
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝐹0 = 0,𝐹1 = 1

STRATEGY
▪ This operation appears intrinsically sequential, however, note that it is possible to compute 𝐹𝑛−1 and 𝐹𝑛−2 simultaneously

and without interference. Thus, two threads are used.
▪ Note that here we only attempt to compute 𝐹𝑛, not the entire sequence.

▪ Fig. 5 depicts the computation of 𝐹5. Essentially, the computations of 𝐹4 and 𝐹3 can be performed simultaneously.

✓ Note how some elements need to be computed several times, e.g.: 𝐹2 is computed thrice, 𝐹3 is computed twice. It looks
as if: i) we could wait until the first 𝐹2 is computed and re-use it in further computations, and ii) we could wait until the

first 𝐹3 is computed to use in the final summation. But this would essentially be a sequential implementation as we would

need to find a way to signal when each element is available for further computations.

▪ Application files: fibonum.c, fibonum_fun.c, fibonum_fun.h, Makefile

✓ Code structure:
 Initialization of arguments.

Figure 3. Task allocation for Fibonacci(5): two threads

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 5 Daniel Llamocca

 Generate thread that computes 𝐹𝑛−1
 Have main() compute 𝐹𝑛−2.

 Wait until generated thread completes.
 Add the results of 𝐹𝑛−2 and 𝐹𝑛−1.
 Display output result.

✓ We use size_t for the computation of 𝐹𝑛. This allows us to use the largest range of unsigned integers for our results.

▪ Compile this application: make all 

▪ Execute this application: ./fibonum <n: # Fib number n> <t: serial or parallel> 
✓ The code allows for parallel implementation (t=2) and serial implementation (t=1, this is for comparison purposes).

▪ Example: ./fibonum 30 2 (compute 𝐹30 using a parallel implementation)

▪ Processing time: By allowing simultaneous execution, we can save processing time as shown in the Table IV for different

values of n.

✓ Table IV shows different cases. Fibonnaci code gets about 1.5 speedup for computing 𝐹𝑛 (for relatively large n)

TABLE IV. COMPUTATION TIMES (US) FOR DIFFERENT FIBONACCI NUMBERS.

n
Implementation

Sequential Parallel (2 threads)

10 4 268

20 128 450

25 1330 1077

30 11,222 6,653

35 96,989 69,225

40 986,713 634,446

45 11,289,350 7,023,567

50 124,114,729 76,200165

	Objectives
	Repository Examples
	Terasic DE2i-150 Board

	Activities
	First Activity: Matrix Multiplication (Sequential Implementation)
	Second Activity: Multi-threaded Matrix Multiplication
	Third Activity: Multi-threaded Fibonacci number computation

