ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

Multi-threading: Matrix Multiplication

OBJECTIVES
= Learn the basics of multi-threading implementation using pthreads in C.

= Execute multi-threaded applications.
= Measure execution time (with 1 us resolution) for different number of threads.

REPOSITORY EXAMPLES
= Refer to the Tutorial: Embedded Intel for the source file used in this Tutorial.

TERASIC DE21-150 BOARD
= Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

BOARD SETUP
= Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.
v Refer to the DE2i-150 Quick Start Guide (page 2) for a useful illustration.

ACTIVITIES

FIRST ACTIVITY: MATRIX MULTIPLICATION (SEQUENTIAL IMPLEMENTATION)
= This is a popular application. It involves many calculations, especially when it comes to matrices of higher order:
Crnxn = Amxp X Byxn
= A straightforward implementation involves nested loops where the dot product is computed for each element of the output
matrix. There are mxn dot products in this operation, where each dot product involves two p-element vectors.

CooJ Co1 Co2 Co3 Cos

-[aoo 201 Go2 203 ao4]_

Figure 1. Matrix multiplication for matrices of size 5x5

= Application files: matrix mult.c, mat fun.c, mat fun.h
v" We use a parameter N = m = n = p = 20. This parameter can be modified before compilation.
v" The matrices A and B are initialized with random data.

= Compile this application:

make matrix mult <J

= Execute this application:
./matrix mult o

= Processing time: This is measured using the gettimeofday () function in the sys/time.n library. Note that only the actual
computation time is included. This excludes memory allocation and matrix initialization.
v For N=20, the processing time results in 90 us. Feel free to verify this result.

SECOND ACTIVITY: MULTI-THREADED MATRIX MULTIPLICATION
= Using pthreads leverages the parallel computing capabilities of the microprocessor. Here, parallelism is achieved by
distributing the operations (ideally evenly) among threads than run in parallel.
= This popular application can be easily parallelized.
Cinxn = Amxp X Bpxn
= In this application, we distribute the operations in terms of computed rows.

OPERATION
= To compute an output matrix with n rows, a group of threads is generated, where each thread computes a number of rows.
All these threads simultaneously compute the output rows.

* This material is based upon work supported by Intel® Corporation 1 Daniel Llamocca

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

= If the number of threads is given by nthreads, then the index i represents each thread form 0 to nthreads-1. Thus, each thread

. . ixn (i+1)xn _
i computes rows from: lnthreadsJ nthreadsJ

v’ nthreads = n: Each thread i computes row i.
v’ nthreads = 1: Here, thread i = 0 computes rows from 0 to n-1. There is no parallelization here.
ixn J _ l(i+1)><n

nthreads] ~ Inthreads

v nthreads > n: Here, there are nthreads-n threads where l

threads compute one thread each. This is suboptimal.
v In general, we prefer nthreads €[1, n]

= Examples for n = 10.
v Fig. 2 depicts the case for 5 threads, each in charge of computing two rows.
v' Table I shows two cases (nthreads = 4,6) where the computations cannot be distributed evenly among the threads.

TABLE |. ROWS COMPUTED PER EACH THREAD FOR DIFFERENT NUMBER OF THREADS. OUTPUT MATRIX IS OF SIZE 10x10.

nthreads =5 nthreads = 6 nthreads = 4
i rows computed i rows computed i rows computed
0 Otol 0 Oto0 0 Otol
1 2t03 1 1to2 1 2to4
2 4to5 2 3to4 2 5to6
3 6to7 3 5to5 3 7to9
4 8to9 4 6to7
5 8to9

Coo Co1 Co2 Co3 Cosa Cos Coe Co7 Cos Coo
L

Cio Ci1 Ci2 Ci3 Cig4 Ci5 Ci1e Ci17 Cis Cig

Cop C21 C22 C23 C24 C25 Cpg C27 Cpg Coo

/ Cq0 Ca1 Caz2 Ca3 Cas Cas Cge Ca47 Cag Cag
I

Csp Csi1 Cs2 Cs3 Csg Css Csg Cs7 Csg Csg

C70 C71 C72 C73 C74 Cys Cye C77 Crg Croo
\ Cgo Cg1 Cgz Cg3 Cgg Cgs Cge Cg7 Cgg Cagg
L

Cop Co1 Cog2 Co3 Cgg Cogs5 Cogg Cg7 Cog Coog

Figure 2. Task allocation for n=10, nthreads = 5.
= Application files: matrix mult pthreads.c, mat fun.c, mat fun.h
v" We use a parameter N = m = n =p = 20. This parameter can be modified before compilation.
v" The matrices A and B are initialized with random data.
v" The number of threads (nthreads) is an argument of the program.
v

J. These threads are idle. The remaining n

There is a parameter MTIME set to 0. It will print out execution messages for each thread. When measuring time, you

need to set MTIME to 1 to avoid including printf instructions in the computation times.
Code structure:

= Thread generation and initialization of arguments.

= Initialization of input matrices A and B.

o If nthreads > 1: Create nthreads threads, where each thread i computes threads l

= Wait until threads complete, merge all the results.
= Display output results.

<\

ixn J (i+1)an .

nthreads nthreads

= Compile this application: make matrix mult pthreads o

= Execute this application: ./matrix mult pthreads <# of threads> o
= Example: ./matrix mult pthreads 10

v Fig. 3 displays the execution messages (output matrix of size 20x20). Note that threads are not necessarily created
consecutively. Some threads even finish before others are created (this varies every time the code is run), which means

that some are not executed simultaneously. This happens because the processing load of each thread is small.

v Fig. 4 displays the execution time. For best accuracy, the messages generated by the threads (“computing slice i”,

“finishing slice i”) are not included in the measurements.

* This material is based upon work supported by Intel® Corporation 2 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

MO & eceq4900@atom: ~fwnrk_uI:luntufpthreadsfmatrixlgult

d

gcc -03 -Wall -o matrix_mult_pthreads old matrix_mult_pthreads _old.c -lpthread
eced4900@atom:~/work_ubuntu/pthreads/matrixmults . /matrix_mult_pthreads 10
(main) Done creating all threads
Computing slice 6 (from row 12 to 13)
Computing slice 8 (from row 16 to 17)
Computing slice 4 (from row 8 to 9)
Finished slice 4

Computing slice 7 (from row 14 to 15)
Computing slice 1 (from row 2 to 3)
Finished slice 1

Computing slice 5 (from row 16 to 11)
Finished slice 5

Computing slice 9 (from row 18 to 19)
Finished slice 9

Finished slice 8

Computing slice 3 (from 6 to 7)
Finished slice 3

Finished slice 7

Computing slice 2 (from 4 to 5)
Finished slice 2

Finished slice 6

Computing slice @ (from B to 1)
Finished slice 8

Result matrix is:

| 49400 49590 49780 49970 50160 50350 50540 50730 50920 51110 51300 5149

Figure 3. Program execution with nthreads = 10 and matrix size 20x20. Each thread generates message (“computing slice i”,
“Finished slice i”). We do not show the execution time here, as it would include the printing of the messages by each
thread. Note how threads can be created and executed in a non-consecutive fashion

MO E eced4900@atom: ~/work_ubuntu/pthreads/matrixmult

| 1265400 1271990 1278580 1285170 1291760 1298350 1304940 13
115360 1318120 1324710 1331300 1337890 1344480 1351070 1357660 136425
® 1370840 1377430 1384020 1390610 |

| 1341400 1348390 1355380 1362370 1369360 1376350 1383340 13
90330 1397320 1404310 14113600 14182RK0 1425280 1432270 1439260 144625
O 1453240 1460230 1467220 1474210 |

| 1417400 1424790 1432180 1439570 1446960 1454350 1461740 14
69130 1476520 1483910 1491300 1498690 1506080 1513470 1520860 152825
® 1535640 1543030 1550420 1557810 |

| 1493400 1501190 1508980 1516770 1524560 1532350 1540140 15
47930 1555720 1563510 1571300 1579096 1586880 1594670 1602460 161025
O 1618040 1625830 1633620 1641410 |

559395 us

end: 560986 us
Elapsed time: 1591 us
ece4900@atom:~/work_ubuntu/pthreads/matrixmults I

Figure 4. Program execution with nthreads = 10 and matrix size 20x20. The execution time here does not include
the printing of the messages by the individual threads.

* This material is based upon work supported by Intel® Corporation Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform

RECRLAB@OU

= Processing time: This is measured using the gettimeofday () function in the sys/time.h library. Note that only the actual
computation time is included. This excludes memory allocation, matrix initialization, and threads arguments generation.

v' Table II shows different cases. For N=20, the use of more threads increases the computation time. This also occurs for
N=50, though the increase is not as pronounced (in some instances, the computation time is decreased). However, for
N=100, 200, the multi-threading approach does reduce the computation time. Both thread initialization and argument
generation incur in overhead time, and large values of N are needed to offset these overhead times.

v Table III shows more cases for large matrices. Note that increasing the number of threads does not lead to performance
improvements, and actually increases the processing time.

v The case nthreads=1 does not use pthreads (it is a normal matrix multiplication).

v Due to variation (sometimes large) in processing time per run, we take an average over 10 consecutive runs. Feel free
to verify these processing times on your own.

TABLE Il. COMPUTATION TIMES (US) FOR DIFFERENT # OF THREADS AND DIFFERENT MATRIX SIZES. TERASIC DE21-150 BOARD.

of threads
N 1 2 3 4 5 6 7 8 9 10
20 90 508 586 647 781 946 982 1252 1304 1591
50 1361 1351 1277 1166 1533 1440 1641 1631 1717 1711
100 12331 6454 7152 5882 6841 4996 6691 6507 5152 4830
200 144835 92508 75932 74977 75448 77430 76338 80051 79652 72048
500 | 4,484270 | 2,264484 | 1,670049 | 1,639815 | 1,614753 | 1,565853 | 1,534638 | 1,525751 | 1,505418 | 1,487816
TABLE I1l. COMPUTATION TIMES (US) FOR DIFFERENT # OF THREADS AND LARGE MATRIX SIZES. TERASIC DE21-150 BOARD.
of threads

N 10 20 50 100

100 4830 5217 10094 14450

200 72048 73341 75921 77345

500 1,487816 | 1,475492 | 1,465813 1,482250

THIRD ACTIVITY: MULTI-THREADED FIBONACCI NUMBER COMPUTATION
= Compute E, forn > 1:

STRATEGY
= This operation appears intrinsically sequential, however, note that it is possible to compute F,_; and F,,_, simultaneously

and without interference. Thus, two threads are used.
= Note that here we only attempt to compute F,, not the entire sequence.
= Fig. 5 depicts the computation of Fs. Essentially, the computations of F, and F; can be performed simultaneously.

v" Note how some elements need to be computed several times, e.g.: F, is computed thrice, F; is computed twice. It looks
as if: i) we could wait until the first F, is computed and re-use it in further computations, and ii) we could wait until the
first F; is computed to use in the final summation. But this would essentially be a sequential implementation as we would
need to find a way to signal when each element is available for further computations.

F F,

Fn = Fn—l + Fn_z,Fo = 0,F1 =1

e

N7

0
F3

F Fy

N

R

Fo

Fy

Fy Fo
> FZ Fl
F;

Fs

Figure 3. Task allocation for Fibonacci(5): two threads

L Application files: fibonum. c, fibonum fun.c, fibonum fun.h, Makefile

v" Code structure:

o

Initialization of arguments.

* This material is based upon work supported by Intel® Corporation

Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® Atom™ Platform RECRLAB@OU

o Generate thread that computes F,,_;
o Have main () compute F,_,.

= Wait until generated thread completes.

= Add the results of F,,_, and F,,_,.
= Display output result.

v We use size t for the computation of F,. This allows us to use the largest range of unsigned integers for our results.

= Compile this application:
= Execute this application:

make all

./fibonum <n: # Fib number n> <t: serial or parallel> J

v" The code allows for parallel implementation (t=2) and serial implementation (t=1, this is for comparison purposes).
= Example: ./fibonum 30 2 (compute F;, using a parallel implementation)

* Processing time: By allowing simultaneous execution, we can save processing time as shown in the Table IV for different

values of n.

v' Table IV shows different cases. Fibonnaci code gets about 1.5 speedup for computing E, (for relatively large n)

TABLE IV. COMPUTATION TIMES (US) FOR DIFFERENT FIBONACCI NUMBERS.

Implementation
n Sequential Parallel (2 threads)
10 4 268
20 128 450
25 1330 1077
30 11,222 6,653
35 96,989 69,225
40 986,713 634,446
45 11,289,350 7,023,567
50 124,114,729 76,200165

* This material is based upon work supported by Intel® Corporation

Daniel Llamocca

	Objectives
	Repository Examples
	Terasic DE2i-150 Board

	Activities
	First Activity: Matrix Multiplication (Sequential Implementation)
	Second Activity: Multi-threaded Matrix Multiplication
	Third Activity: Multi-threaded Fibonacci number computation

